21. I. P. Andreichikov and V. I. Yudovich, "Self-oscillatory modes branching from Poiseuille flow in a plane channel," Dokl. Akad. Nauk SSSR, 202, No. 4, 791 (1972).
22. S. K. Godunov, "Numerical solution of boundary-value problems for systems of linear ordinary differential equations," Usp. Mat. Nauk, 16, No. 3(99), 171-174 (1961).
23. S. D. Conte, "The numerical solution of linear boundary-value problems," SIA Review, 8, No. 3, 309321 (1966).

OSCILLATIONS OF AN IDEAL LIQUID ACTED UPON

BY SURFACE-TENSION FORCES. CASE OF A DOUBLY

CONNECTED FREE SURFACE

```
V. R. Orel
```

UDC 532.593

Many articles have appeared on the problems of small oscillations of an ideal liquid acted upon by surface-tension forces. Oscillations of a liquid with a single free surface are treated in [1, 2]. Oscillations of an arbitrary number of immiscible liquids bounded by equilibrium surfaces on which only zero volume oscillations are assumed possible are investigated in [3]. We consider below the problem of the oscillations of an ideal liquid with two free surfaces on each of which nonzero volume disturbances are kinematically possible. The disturbances satisfy the condition of constant total volume. A method of solution is presented. The problem of axisymmetric oscillations of a liquid sphere in contact with the periphery of a circular opening is considered neglecting gravity. The first two eigenfrequencies and oscillatory modes are found.
§1. Suppose a certain volume Q of an ideal liquid bounded by solid walls of a container S and two free surfaces Σ_{1} and Σ_{2} (Fig. 1) is in a state of stable equilibrium; ρ is the density of the liquid, and σ_{1} and σ_{2} are the surface tensions. The external field of body forces has the potential Π.

We consider small oscillations of the liquid about the equilibrium position. We denote by $\mathbf{n}_{\mathbf{i}}(\xi)$ the normal to the undisturbed surface $\Sigma_{i}(i=1,2)$ at the point ξ directed outward from the region Q, and by $u_{i}(\xi, t)$ a small displacement along n_{i} at time $t \geq 0$. We assume that the displacement $u_{i}(\xi, t)$ is a twice continuously differentiable function of the parameter $\xi\left(\in \Sigma_{i}\right)$. We denote by D_{i} the set of such functions. Let $D=D_{1} \times D_{2}$ be the space of all pairs of functions $\left\{u_{1}, u_{2}\right\}$ where $u_{i} \in D_{i}$. We use the vector notation $u=\left\{u_{1}, u_{2}\right\}$ for the elements of the set D. We define the scalar product in $D(\mathbf{u}, \mathbf{v} \in D)$

$$
(u, v)=\int_{\dot{S}_{1}} u_{1} r_{1} d \Sigma_{1}-\int_{i_{2}} u_{2} v_{2} d \Sigma_{2} .
$$

We introduce the displacement potential $\Phi(q, t), q \in(1$ to describe small oscillations of an ideal liquid [4]. For any $t \geq 0$ the potential Φ is a solution of the problem

$$
\begin{gather*}
\lambda(\mathrm{D}=\mathrm{=}, q \in \hat{i} ; \tag{1.1}\\
\partial \Phi / \partial \mathbf{n}_{;}=-\left(i ; \partial \Phi /\left.\partial \mathbf{n}_{i}\right|_{i}=u_{i}(i=1,2) .\right.
\end{gather*}
$$

The necessary condition for the solvability of the inner Neumann problem (1.1) is the conservation of volume [5]

$$
\begin{equation*}
(1, u)=\int_{-1} u_{1} d \Sigma_{1} \int_{U_{1}} u d \Xi_{2}=0 . \tag{1.2}
\end{equation*}
$$

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 64-71, MayJune, 1976. Original article submitted May 22, 1975.

[^0]

Fig. 1

We denote by D_{0} the subspace of the space D which contains the elements u satisfying Eq. (1.2). It is known [5] that for every $u \in D_{0}$ problem (1.1) has a solution Φ which is unique to within an arbitrary function of the time $\mathrm{f}(\mathrm{t})$. We set $\Psi_{i}(\xi, t) \equiv \Phi(\xi, t) \mid \xi \in \Sigma_{i}(\mathrm{i}=1,2)$. It can be shown [1-3] that a matrix of linear operators $G=\left\|G_{i k}\right\|(i, k=1,2)$ exists connecting an arbitrary element u of D_{0} with the corresponding vector $\Psi=\left\{\Psi_{1}, \Psi_{2}\right\}$:

$$
\begin{equation*}
\Psi=G \mathbf{u}+f 1 \tag{1.3}
\end{equation*}
$$

Using the properties of harmonic functions [5] it can be established that the operator G is symmetric and positive in the space D_{0}; this means that $(\mathbf{u} \neq 0)$

$$
\begin{equation*}
(G \mathbf{u}, \mathbf{u})>0, \mathbf{u} \in D_{\mathbf{0}} \tag{1.4}
\end{equation*}
$$

We consider the matrix differential operator $A=\left\|A_{i} \delta_{i k}\right\|(i, k=1,2)$ and D,

$$
\begin{equation*}
A_{i} u_{i} \equiv \sigma_{i}\left(-\Delta_{i}+\tau_{i}(\xi)\right) u_{i}(\xi, t), \quad \xi \in \Sigma_{i}, u_{i} \in D_{i} \tag{1.5}
\end{equation*}
$$

Here Δ_{i} is the Laplacian operator [6] on the surface Σ_{i}, and the function $\tau_{i}(\xi)$ is given by the expression [7]

$$
\tau_{i}(\xi)=-\frac{1}{\sigma_{i}} \frac{\partial \Pi}{\partial n_{i}}-4 H_{i}^{2}(\xi)+2 K_{i}(\xi)
$$

where $H_{i}(\xi)$ is the mean curvature and $K_{i}(\xi)$ is the Gaussian curvature [6] at the given point $\xi \in \Sigma_{i}$.
Let L_{i} be the line of intersection of the surfaces Σ_{i} and S. The kinematic slipping condition for the displacement $u_{i}(\xi, t)$ on L_{i} has the form [1,7]

$$
\begin{equation*}
\partial u_{i} / \partial \mathbf{e}_{i}+\chi_{i}(\xi) u_{i}=0, \xi \in L_{i}(i=1,2) \tag{1.6}
\end{equation*}
$$

Here \mathbf{e}_{i} is a unit vector along the outward normal to the line $\mathrm{L}_{\mathbf{i}}$ drawn tangent to the surface $\Sigma_{\mathbf{i}}$ at the point ξ; the function $\chi_{i}(\xi)$ is given by the expression $[1,7]$

$$
\chi_{i}(\xi)=\left[\chi_{i}(\xi) \cos \gamma_{i}-\eta_{i}(\xi)\right] / \sin \gamma_{i}\left(\sin \gamma_{i} \neq 0\right),
$$

where γ_{i} is the contact angle, $\chi_{i}(\xi)$ is the curvature of a normal cross section of the free surface Σ_{i} along the direction $e_{i} ; \eta_{i}(\xi)$ is the similarly defined curvature of a normal cross section of the wetted surface S at point $\bar{\xi} \in L_{i}(i=1,2)$.

Let D_{i}^{χ} be the set of functions u_{i} from D_{i} which satisfies the conditions (1.6). It can be shown [8] that the operators A_{i} (1.5) are symmetric on the sets $D_{i}^{\chi}(i=1,2)$. Therefore, the matrix operator A is symmetric on $D_{1} \chi \times D_{2} \chi$. We set $W_{0} \equiv D_{0} \cup\left(D_{1} \chi \times D_{2} \chi\right)$. Since the volume Q is in stable equilibrium, taking account of the form of the second variation of the potential energy of the system of two surfaces Σ_{1} and Σ_{2} [9] we obtain $(u \neq 0)$

$$
\begin{equation*}
(A \mathbf{u}, \mathbf{u})>0, \mathbf{u} \in W_{0} . \tag{1.7}
\end{equation*}
$$

We write down the linearized dynamic conditions satisfied by the values Ψ_{1} and Ψ_{2} of the displacement potential Φ on the free surfaces $[1,2,4](\mathrm{k}=1,2)$

$$
\begin{equation*}
-\rho\left(\partial^{2} \Psi_{k} / \partial t^{2}\right)(\xi, t)=A_{k} u_{k}(\xi, t)+f(t), \xi \in \Sigma_{k} \tag{1.8}
\end{equation*}
$$

Assuming everywhere a time dependence of the form $\exp (\mathrm{i} \omega \mathrm{t}$) and using (1.3), we write (1.8) in the form ($f=$ const)

$$
\omega^{2} \rho G \mathbf{u}=A \mathbf{u}+f \mathbf{l},
$$

from which we obtain by using (1.2), (1.4), and (1.7)

$$
\begin{equation*}
\omega^{2}=[(A \mathbf{u}, \mathbf{u}) / \rho(G \mathbf{u}, \mathbf{u})](>0), \mathbf{u} \in W_{0} . \tag{1.9}
\end{equation*}
$$

Following [8] we consider the chain of minimization problems

$$
\begin{equation*}
\omega_{j}^{2}=\min _{\mathbf{w}_{j-1}} \frac{(A \mathbf{u}, \mathbf{u})}{\rho(G \mathbf{u}, \mathbf{u})}, j=1,2, \ldots \tag{1.10}
\end{equation*}
$$

to find the eigenfrequencies ω_{j} and the oscillatory modes z_{j} of the volume Q of an ideal liquid, where $W_{j-1}(j=2$, $3, \ldots)$ is a subspace of space W_{0} orthogonal to the vectors $\left\{z_{1}, \ldots, z_{j}-1\right\}$, known from the solution of the preceding problems, on which the successive minima $\left\{\omega_{1}^{2}, \ldots, \omega_{j-1}^{2}\right\}$ of Eq. (1.10) are reached.
§2. We indicate one possible way of constructing and solving the sequence of problems (1.10). We denote by φ_{k}, ψ_{j} the eigenfunctions of the operators A_{1}, A_{2} on the sets $D_{1}^{\chi}, D_{2}^{\chi}$, and by $\nu_{k}, \mu_{j}(k, j=1,2, \ldots)$ the corresponding eigenvalues

$$
\begin{equation*}
A_{1} \varphi_{k}=v_{k} \varphi_{k}, \varphi_{k} \in D_{1}^{\chi}, A_{2} \psi_{j}=\mu_{j} \psi_{j}, \psi_{j} \in D_{2}^{\gamma} . \tag{2.1}
\end{equation*}
$$

Since each operator A_{i} is symmetric on $D_{i}^{\chi}[8]$ the eigenvalues $\nu_{k}, \mu_{k}(k=1,2, \ldots)$ are real, and the systems of functions $\left\{\varphi_{\mathrm{k}}\right\},\left\{\psi_{k}\right\}$ are orthogonal on the corresponding $\mathrm{D}_{\mathrm{i}}^{\chi}$. Without loss of generality we assume that the systems $\left\{\varphi_{\mathrm{k}}\right\},\left\{\psi_{\mathrm{k}}\right\}$ are normalized and the sets of eigenvalues $\left\{\nu_{\mathrm{k}}\right\},\left\{\mu_{\mathrm{k}}\right\}$ are arranged in ascending order.

Let N be a positive integer. We consider the finite-dimensional subspace $W_{0}{ }^{N}$ of the space $W_{0}\left(D_{0} \cup^{(} D_{1}^{\chi} \times\right.$ D_{2}^{χ})) such that every element $\mathbf{u} \in \mathrm{W}_{0} \mathrm{~N}^{\text {has }}$ he form

By definition, the elements of the set $W_{0}{ }^{N}$ satisfy the conservation of volume (1.2)

$$
\begin{equation*}
(\mathbf{u}, \mathbf{1})=\sum_{k=1}^{N} a_{k} \int_{\Sigma_{1}}^{\prime} \varphi_{k} d \Sigma_{1} \div \sum_{k=1}^{N} b_{k} \int_{\Sigma_{2}} \psi_{k} d \Sigma_{2}=\sum_{k=1}^{2 N} \alpha_{k} u_{k}=0 \tag{2.2}
\end{equation*}
$$

where

$$
\begin{gather*}
\alpha_{2 k-1}=a_{k} ; \alpha_{2 k}=b_{k}(k=1,2, \ldots, N) ; \\
u_{2 k-1}=\int_{\unrhd_{-}} \varphi_{k} d \Sigma_{1}, u_{2 k}=\int_{\Xi_{2}} \psi_{k} d \Sigma_{2} . \tag{2.3}
\end{gather*}
$$

Knowing the set of numbers (2.3) $\left\{w_{k}\right\}$ we can construct a fundamental set of solutions $Y_{N}=\left\{\mathbf{y}_{1}, y_{2}, \ldots\right.$, $\left.\mathbf{y}_{\mathrm{n}}\right\}$ of Eq. (2.2). The vectors y_{k} entering Y_{N} are 2 N dimensional, and their number n is determined by the number of nonzero coefficients $\mathrm{w}_{\mathrm{k}}(2.3)$ and the kinematic restrictions imposed on the oscillations of the volume Q. It can be shown that $2(N-1) \leq n \leq 2 N$. In particular, if displacements u_{i} with nonzero volumes are admissible on both surfaces, and among the numbers w_{k} at least two are different from zero, $n=2 N-1$.

To each vector $y_{k}\left(\in \mathrm{Y}_{\mathrm{N}}\right)$ there corresponds a definite element V_{k} of the space $W_{0}{ }^{N}(\mathrm{k}=1,2, \ldots \mathrm{n})$,

$$
\begin{equation*}
\mathbf{v}_{k}=\left\{\sum_{i=1}^{\stackrel{~}{2}} y_{2 i-1, k} \mathscr{Y}_{i}, \quad \sum_{i=1}^{\grave{y}} y_{2 i, k} \psi_{i}\right\} . \tag{2.4}
\end{equation*}
$$

The vectors ∇_{k} form a basis in $W_{0} N$, and therefore every element $u \in W_{0} N$ has the form

$$
\begin{equation*}
\mathbf{u}=\sum_{i=1}^{n} c_{i} \mathbf{v}_{i} \tag{2.5}
\end{equation*}
$$

We denote by Φ_{k} the solution of problem (1.1) with boundary conditions given by the vector v_{k} (2.4). On the free surface $\Sigma_{i}(i=1,2)$ the displacement potential Φ_{k} goes over into the function Ψ_{i}, k in which the vectors v_{k} and $\mathrm{T}_{\mathrm{k}}=\left\{\Psi_{1, k}, \Psi_{2, k}\right\}(1 \leq \mathrm{k} \leq \mathrm{n})$ are connected by the relation (1.3).

Substituting (2.5) into (1.9), we obtain

$$
\begin{equation*}
\omega^{2}=\sum_{i=1}^{n} \sum_{k=1}^{n} a_{i k} c_{i} c_{k}\left[\rho \sum_{j=1}^{n} \sum_{l=1}^{n} g_{j l} c_{j} c_{l}\right]^{-1} \tag{2.6}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{i h}=a_{k i}=\sum_{l=1}^{\mathbf{\Sigma}} v_{l} y_{2 l-1, i} y_{2 l-1, k}+\sum_{l=1}^{\mathbf{V}} \mu_{l} y_{2 l, i} y_{2 l, k} ; \tag{2.7}
\end{align*}
$$

Both quadratic forms are positive-definite and, therefore [10], there is a linear transformation of the variables $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$:

$$
\begin{equation*}
c_{i}=\sum_{j=1}^{n} U_{i j} x_{j} \tag{2.8}
\end{equation*}
$$

which gives Eq. (2.6) the form

$$
\begin{equation*}
\omega^{2}=\sum_{k=1}^{n} \lambda_{k} x_{k}^{2}\left[\rho \sum_{i=1}^{n} x_{i}^{2}\right]^{-1} \tag{2.9}
\end{equation*}
$$

Here the $\left\{\lambda_{k}\right\}$ are arranged in order of increasing roots of the equation [10]

$$
\operatorname{det}\left\|a_{i k}-\lambda g_{i k}\right\|=0
$$

Solving (1.10), the problem of minimizing Eq. (2.9), we obtain approximate values of the frequencies $w_{j, ~}$ and the modes z_{j}, n of the natural vibrations of the volume Q :

$$
\omega_{j, N}=\sqrt{\lambda_{j}}, \dot{\mathbf{z}_{j, N}}=\sum_{i=1}^{n} U_{i j} \mathbf{v}_{i}, j=1,2, \ldots, n
$$

§3. Let us consider a volume Q of an ideal liquid in the form of a sphere of radius R and neglect gravity $(\Pi \equiv 0)$. We assume that the liquid sphere is in contact with the periphery of a circular opening of radius $\mathrm{r}<\mathrm{R}$ without changing its shape. The circle of contact divides the surface of the sphere into two parts Σ_{1}, Σ_{2} (Fig. 2). We denote the half-angle of the spherical segment $\Sigma_{i}(i=1,2)$ by β_{i}. We set $\beta_{1}=\beta$ (Fig. 2) and then $\beta_{2}=$ $\pi-R$.

By assuming that the wettability of the periphery of the opening is complete, the boundary conditions (1.6) have the form

$$
\left.u_{1}\right|_{L_{1}}=\left.u_{2}\right|_{L_{2}}=0
$$

We assume that the surface tensions on Σ_{1} and Σ_{2} are the same ($\sigma_{1}=\sigma_{2}=\sigma$). Then it can be shown [9] that for all values of β different from $\pi / 2$ the inequality (1.7) is satisfied and the volume Q is in stable equilibrium.

On each segment $\Sigma_{i}(i=1,2)$ we introduce its own curvilinear coordinate system $\{\varphi, s\}$, where φ is the angle of rotation about the axis of symmetry, and s is the arc length measured along the meridian from the pole of the segment $(s=0)$ to the edge of the opening ($s=R \beta_{i}$). We consider only axisymmetric oscillations of the liquid sphere Q. The problem of determining the eigenvalues and eigenfunctions of the operator A_{i} (1.5) on the set D_{i}^{χ} takes the form [9]

$$
\begin{gather*}
-\left(\sigma / R^{2}\right)\left(d^{2} u / d \alpha^{2}+\operatorname{ctg} \alpha d u / d \alpha+2 u\right)=\lambda u, 0<\alpha<\beta_{i} \tag{3.1}\\
|u(0)|<+\infty, u\left(\beta_{i}\right)=0, i=1,2
\end{gather*}
$$

The eigenfunctions of problems (3.1) are [11] Legendre functions of the first kind $\mathrm{P}_{\gamma \mathrm{k}}(\cos \alpha)$, $\mathrm{P} \eta_{\mathrm{k}}(\cos \alpha)$ ($k=1,2, \ldots$), where γ_{k} and η_{k} are successive roots of the equations

$$
\begin{equation*}
P_{\gamma}\left(\cos \beta_{1}\right)=0 ; P_{\eta}\left(\cos \beta_{2}\right)=0 \tag{3.2}
\end{equation*}
$$

To simplify the calculations we set ρ, σ, and $R=1$, which corresponds to the transformation to the dimensionless parameter ω^{2} in (2.6). It can be shown that the dimensional frequency of oscillations is related to the dimensionless frequency by the expression

$$
\begin{equation*}
\omega^{2}(\rho, \sigma, R)=\left(\sigma / \rho R^{3}\right) \omega^{2}(1,1,1) \tag{3.3}
\end{equation*}
$$

The eigenvalues ν_{k} and μ_{k} of the operators A_{1} and A_{2} are given by the expressions [11]

$$
\begin{equation*}
v_{k}=\gamma_{k}\left(\gamma_{k}+1\right)-2 ; \mu_{k}=\eta_{k}\left(\eta_{k}+1\right)-2 \tag{3.4}
\end{equation*}
$$

The normalized eigenfunctions $\varphi_{\mathrm{k}}{ }^{(\alpha)}$ and $\psi_{\mathrm{k}}(\alpha)$ of the operators A_{1} and A_{2} have the form

$$
\begin{array}{ll}
\varphi_{k}(\alpha)=P_{\gamma_{k}}(\cos \alpha) N_{k}^{-1}, & \alpha \in\left(0, \beta_{1}\right) \\
\psi_{k}(\alpha)=P_{\eta_{k}}(\cos \alpha) M_{k}^{-1}, & \alpha \in\left(0, \beta_{2}\right)
\end{array}
$$

where

$$
N_{k}^{2}=\int_{0}^{\beta_{1}}\left(P_{\gamma_{k}}(\cos \alpha)\right)^{2} \sin \alpha d \alpha ; \quad M_{k}^{2}=\int_{0}^{\beta_{2}}\left(P_{\eta_{k}}(\cos \alpha)\right)^{2} \sin \alpha d \alpha .
$$

We obtain the volumes $w_{k}(2.3)$ by integrating the functions φ_{k} and ψ_{k} over the surface of a sphere of unit radius,

$$
\begin{gather*}
w_{2 k-1}=2 \pi \int_{0}^{\beta_{2}} \varphi_{k}(\alpha) \sin \alpha d \alpha ; \quad w_{2 k}=2 \pi \int_{0}^{R_{2}} \psi_{k}(\alpha) \sin \alpha d \alpha \tag{3.5}\\
k=1,2, \ldots
\end{gather*}
$$

Calculations [9] showed that the numbers w_{k} were different from zero for any half-angles of the spherical segments, and therefore

$$
\begin{align*}
& \mathbf{v}_{2 j-1}=\left\{\frac{w_{2 j} \varphi_{j}}{\sqrt{w_{2 j-1}^{2}+w_{2 j}^{2}}} ; \left.\frac{-w_{2 j-1} \psi_{j}}{\sqrt{w_{2 j-1}^{2}+w_{2 j}^{2}}} \right\rvert\,, \quad 1 \leqslant j \leqslant N ;\right. \tag{3.6}\\
& \mathbf{v}_{2 j}=\left\{\frac{w_{2 j} \varphi_{2 j+1}}{\sqrt{w_{2 j}^{2}+w_{2 j+1}^{2}}} ; \quad \frac{-w_{2 j+1} \psi_{j}}{\sqrt{w_{2 j}^{2}+w_{2 j+1}^{2}}}\right\}, \quad 1 \leqslant j \leqslant N-1
\end{align*}
$$

can be taken as the basis vectors $\mathrm{V}_{\mathrm{k}}(2.4)$ of the space $\mathrm{W}_{0} N$.
The fundamental system of solutions of Eq. (2.2) corresponding to the vectors (3.6) consists of the elements

$$
\begin{gather*}
y_{i k}=\left\{\begin{array}{l}
0, i<k \quad \text { or } \quad i>k+1 \\
(-1)^{k+1} w_{k+1}\left(u_{k}^{2}+w_{k+1}^{2}\right)^{-1 / 2}, \quad i=k \\
(-1)^{k} w_{k}\left(w_{k}^{2}+w_{k+1}^{2}\right)^{-1 / 2}, \quad i=k+1
\end{array}\right. \tag{3.7}\\
i=1,2 \ldots, 2 N ; \quad k=1, \ldots, 2 N-1
\end{gather*}
$$

By substituting into (2.7) and using (3.3) and (3.7) we obtain for the coefficients $a_{i k}(1 \leq i, k \leq 2 N-1)$

$$
\begin{equation*}
a_{i k}=a_{k i}=2 \pi \sum_{l=1}^{N}\left(v_{l} y_{2 l-1, i} y_{2 l-1, k}+\mu_{l} y_{2 l, i} y_{2 l, k}\right) \tag{3.8}
\end{equation*}
$$

In order to determine the elements of the matrix $\mathrm{g}_{\mathrm{ik}}(2.7)$ we construct solutions of problem (1.1) with boundary conditions given by the vectors (3.6). Let θ be the angle measured along the meridian of the sphere $(\mathrm{R}=1)$ from the pole of the segment $\Sigma_{1}(\theta=0)$ to the pole of the segment $\Sigma_{1}(\theta=\pi)$. Using the known [5] solution of the inner Neumann problem (1.1) for a sphere we obtain an expression for the displacement potential Φ_{k} on the surface:

$$
\begin{gather*}
\Phi_{k}(1, \theta)=\sum_{l=1}^{\infty}(1+1 / 2 l) p_{l}(\cos \theta) \int_{0}^{\pi} f_{k}(\alpha) p_{l}(\cos \alpha) \sin \alpha d \alpha \tag{3.9}\\
k=1,2, \ldots, 2 N-1
\end{gather*}
$$

where the $P_{l}(\cos \alpha)$ are Legendre polynomials [5, 11], and $\mathrm{f}_{\mathrm{k}}(\alpha)$ is the disturbance of the surface of sphere Q given by the vector ∇_{k} (3.6)

$$
f_{k}(\theta)=\left\{\begin{array}{l}
v_{1},{ }_{k}(\theta), \theta \in(0, \beta) \tag{3.10}\\
v_{2},{ }_{k}(\pi-\theta), \theta \in(\beta, \pi)
\end{array}\right.
$$

We introduce the set of numbers $(j=1,2, \ldots, N ; l=1,2, \ldots)$

$$
\begin{align*}
p_{j, l} & =\int_{0}^{\beta} \varphi_{j}(\alpha) P_{l}(\cos \alpha) \sin \alpha d \alpha \\
q_{j, l} & =\int_{0}^{\pi-\beta} \psi_{j}(\alpha) P_{l}(\cos \alpha) \sin \alpha d \alpha \tag{3.11}
\end{align*}
$$

Noting that

$$
q_{i, l}=(-1)^{i} \int_{\pi-\beta}^{\pi} \psi_{j}(\pi-\alpha) P_{l}(\cos \alpha) \sin \alpha d \alpha
$$

Fig. 2

Fig, 3

Fig. 4
and using for v_{k} in (3.10) the expression (2.4), Eq. (3.9) can be written in the form ($\mathrm{k}=1,2, \ldots, 2 \mathrm{~N}-1$)

$$
\Phi_{k}(1, \theta)=\sum_{l=1}^{\infty}(1+1 / 2 l) V_{h, l} P_{l}(\cos \theta)
$$

where

$$
V_{k, l}=\sum_{j=1}^{N}\left(y_{2 j-1, k} p_{j, l}+(-1)^{l} y_{2 j, k} q_{j, l}^{\prime} .\right.
$$

Hence, by evaluating the integrals for the coefficients $g_{i k}$ in Eq. (2.7) over the surface of a unit sphere we obtain (i, $k=1,2, \ldots, 2 N-1$)

$$
\begin{equation*}
g_{i k}=g_{k i}=2 x \sum_{l=1}^{\infty}(1 \div 1 / 2 i) V_{i l} V_{k l} . \tag{3.12}
\end{equation*}
$$

Let us fix a certain half-angle $\beta(>\pi / 2)$ of the spherical segment Σ_{1} (Fig. 2). Specifying the number N of functions $\varphi_{\mathrm{k}}, \psi_{\mathrm{k}}$ on the surfaces Σ_{1}, Σ_{2}, and performing the necessary calculations by using the formulas given above, we find the coefficients a_{ik} (3.8) and g_{ik} (3.12). By minimizing (2.6) with $\mathrm{n}=2 \mathrm{~N}-1$ we obtain the approximate values of the dimensionless frequencies $\omega_{\mathrm{j}, \mathrm{N}}$ and the corresponding axisymmetric oscillatory modes $\mathbf{z}_{\mathrm{j}}, \mathrm{N}$ of sphere Q . The transformation to dimensional frequencies is given by (3.3).

The calculations were performed by computer. Tabulated values [9] of the roots of Eqs. (3.2) and volumes (3.5) were used. A good approximation of the first two oscillatory modes (for $90^{\circ}<\beta<150^{\circ}$) was obtained by taking $\mathrm{N}=4$. The quantities $\mathrm{g}_{\mathrm{j}, l}$ and $\mathrm{p}_{\mathrm{j}, l}($ (3.11) $(\mathrm{j}=1,2,3,4 ; l=1,2, \ldots, \mathrm{~m})$ were calculated by numerical integration with a check on accuracy. The number m of Legendre polynomials taken into account in (3.12) varied from 10 to 50 as β was increased. The method of rotations was used to minimize Eq. (2.6) to the form (2.8) and to calculate the roots of Eq. (2.9).

Figure 3 shows the dependence of the first two frequencies ω_{1} and ω_{2} of axisymmetric natural oscillations of liquid sphere Q on the angle of fixation $\beta \in\left(90,150^{\circ}\right)$.

Figure $4 \mathrm{a}, \mathrm{b}, \mathrm{c}$ shows the natural oscillatory modes $\mathbf{z}_{1}, \mathbf{z}_{2}$ of sphere Q for angles $\beta=90,120$, and 145°, respectively. Calculations showed that the first mode of axisymmetric oscillations of the sphere has the same sign on the smaller segment Σ_{2} for all values of the angle β. On the larger segment Σ_{1} the first mode z_{1} has the same sign for $\beta \in\left(90^{\circ}, 115^{\circ}\right)$; for $\beta>115^{\circ}$ there is one change of sign. The second mode \mathbf{z}_{2} of natural oscillations for $\beta<108^{\circ}$ changes sign once on the smaller segment, and for $\beta>108^{\circ}$ the second mode has the same sign on Σ_{2} (Fig. 4b, c). On segment Σ_{1} for $\beta \in\left(90^{\circ}, 139^{\circ}\right.$) the second oscillatory mode changes sign once (Fig. $4 \mathrm{a}, \mathrm{b}$); for $\beta>139^{\circ}$ (Fig. 4c) the second mode changes sign twice.

In conclusion, the author thanks F. L. Chernous'ko for posing the problem and for his attention to the work.

LITERATURE CITED

1. N. N. Moiseev and F. L. Chernous'ko, "Problems of the oscillations of a liquid acted upon by surface tension forces," Zh. Vychisl. Mat. Mat. Fiz., No. 6 (1965).
2. N. D. Kopachevskii, "Hydrodynamics in weak force fields. Small oscillations of an ideal liquid, n Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2 (1966).
3. N. D. Kopachevskii, "Oscillations of immiscible liquids," Zh. Vychisl. Mat. Mat. Fiz., No. 5 (1973).
4. G. N. Mikishev and B. N. Rabinovich, Dynamics of a Rigid Body Containing Cavities Partially Filled with Liquid [in Russian], Mashinostroenie, Moscow (1968).
5. V. S. Vladimirov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1967).
6. V. Blyashke, Differential Geometry [in Russian], ONTI, Moscow-Leningrad (1935).
7. A. D. Tyuptsov, "Hydrostatics in weak force fields. Stability of equilibrium forms of the surface of a

8. S. G. Mikhlin, Variational Methods in Mathematical Physics [in Russian], Nauka, Moscow (1970).
9. V. R. Orel, "Stability of an incompressible fluid acted upon by surface tension forces. Case of a doubly connected equilibrium surface," Zh. Prikl. Mekh. Tekh. Fiz., No. 6 (1974).
10. F. R. Gantmacher, The Theory of Matrices, Chelsea, New York (1959).
11. E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Chelsea, New York (1955).

DYNAMICS OF A DIVERGING LIQUID MENISCUS IN

A CAPILLARY, TAKING INTO ACCOUNT THE SPECIFIC

PROPERTIES OF THIN FILMS
B. V. Zheleznyi

UDC 532.68

The theory of the diverging meniscus of a Newtonian liquid for capillary flow conditions at low meniscus velocities, in which the thermodynamic and rheological features of thin wetting films appear, is set forth. Two cases are considered: thermodynamically stable wetting film with high viscosity in the boundary layer on a completely wetted solid surface and a thermodynamically unstable film on a conditionally wetted solid surface exhibiting a liquid slip effect.

The relation between the thickness h^{*} of the film left on the walls of the cylindrical capillary behind a diverging liquid meniscus and the rate v at which the meniscus travels is determined when studying the properties of wetting films in the capillary method [1]. Extrapolation of h_{*} (v) to zero velocity makes it possible to find the thickness of equilibrium films with a meniscus in capillaries of various radii R and to thereby determine the basic thermodynamic characteristic of equilibrium wetting films - the wedging pressure isotherm. Moreover, $h_{*}(v)$ provides information about the rheological properties of wetting films. A theory of the diverging meniscus that would take into account the specific properties of thin films is necessary in order to interpret this information and to correctly extrapolate $h_{*}(v)$ to zero velocity.

The dynamics of the diverging meniscus of a wetting liquid has been previously considered under the assumption that the film deposited on a solid film surface exhibits the properties of a bulk liquid phase (the viscosity coefficient η_{0} and coefficient of surface tension σ are given by tables) [2-4]. Various methods have yielded the equation

$$
\begin{equation*}
\sigma d^{3} h / d l^{3}=3 \eta_{0} \nu\left(1 / h^{2}-h_{*} / h^{3}\right), \tag{1}
\end{equation*}
$$

which describes steady flow in one direction in a flat film of a Newtonian liquid on a plane (or circular cylindrical) solid surface if flow occurs only due to capillary forces (capillary flow regime). In Eq. (1) h_{*} is the

Leningrad. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 72-82, MayJune, 1976. Original article submitted April 15, 1975. microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $\$ 7.50$.

[^0]: This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17 th Street, New York, N. Y. 10011 . No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $\$ 7.50$.

